Cargando…

Specific energy contributions from competing hydrogen-bonded structures in six polymorphs of phenobarbital

BACKGROUND: In solid state structures of organic molecules, identical sets of H-bond donor and acceptor functions can result in a range of distinct H-bond connectivity modes. Specifically, competing H-bond structures (HBSs) may differ in the quantitative proportion between one-point and multiple-poi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gelbrich, Thomas, Braun, Doris E., Griesser, Ulrich J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763432/
https://www.ncbi.nlm.nih.gov/pubmed/26909105
http://dx.doi.org/10.1186/s13065-016-0152-5
Descripción
Sumario:BACKGROUND: In solid state structures of organic molecules, identical sets of H-bond donor and acceptor functions can result in a range of distinct H-bond connectivity modes. Specifically, competing H-bond structures (HBSs) may differ in the quantitative proportion between one-point and multiple-point H-bond connections. For an assessment of such HBSs, the effects of their internal as well as external (packing) interactions need to be taken into consideration. The semi-classical density sums (SCDS-PIXEL) method, which enables the calculation of interaction energies for molecule–molecule pairs, was used to investigate six polymorphs of phenobarbital (Pbtl) with different quantitative proportions of one-point and two-point H-bond connections. RESULTS: The structures of polymorphs V and VI of Pbtl were determined from single crystal data. Two-point H-bond connections are inherently inflexible in their geometry and lie within a small PIXEL energy range (−45.7 to −49.7 kJ mol(−1)). One-point H-bond connections are geometrically less restricted and subsequently show large variations in their dispersion terms and total energies (−23.1 to −40.5 kJ mol(−1)). The comparison of sums of interaction energies in small clusters containing only the strongest intermolecular interactions showed an advantage for compact HBSs with multiple-point connections, whereas alternative HBSs based on one-point connections may enable more favourable overall packing interactions (i.e. V vs. III). Energy penalties associated with experimental intramolecular geometries relative to the global conformational energy minimum were calculated and used to correct total PIXEL energies. The estimated order of stabilities (based on PIXEL energies) is III > I > II > VI > X > V, with a difference of just 1.7 kJ mol(−1) between the three most stable forms. CONCLUSIONS: For an analysis of competing HBSs, one has to consider the contributions from internal H-bond and non-H-bond interactions, from the packing of multiple HBS instances and intramolecular energy penalties. A compact HBS based on multiple-point H-bond connections should typically lead to more packing alternatives and ultimately to a larger number of viable low-energy structures than a competing one-point HBS (i.e. dimer vs. catemer). Coulombic interaction energies associated with typical short intermolecular C–H···O contact geometries are small in comparison with dispersion effects associated with the packing complementary molecular shapes. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13065-016-0152-5) contains supplementary material, which is available to authorized users.