Cargando…

Which Genetics Variants in DNase-Seq Footprints Are More Likely to Alter Binding?

Large experimental efforts are characterizing the regulatory genome, yet we are still missing a systematic definition of functional and silent genetic variants in non-coding regions. Here, we integrated DNaseI footprinting data with sequence-based transcription factor (TF) motif models to predict th...

Descripción completa

Detalles Bibliográficos
Autores principales: Moyerbrailean, Gregory A., Kalita, Cynthia A., Harvey, Chris T., Wen, Xiaoquan, Luca, Francesca, Pique-Regi, Roger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764260/
https://www.ncbi.nlm.nih.gov/pubmed/26901046
http://dx.doi.org/10.1371/journal.pgen.1005875
Descripción
Sumario:Large experimental efforts are characterizing the regulatory genome, yet we are still missing a systematic definition of functional and silent genetic variants in non-coding regions. Here, we integrated DNaseI footprinting data with sequence-based transcription factor (TF) motif models to predict the impact of a genetic variant on TF binding across 153 tissues and 1,372 TF motifs. Each annotation we derived is specific for a cell-type condition or assay and is locally motif-driven. We found 5.8 million genetic variants in footprints, 66% of which are predicted by our model to affect TF binding. Comprehensive examination using allele-specific hypersensitivity (ASH) reveals that only the latter group consistently shows evidence for ASH (3,217 SNPs at 20% FDR), suggesting that most (97%) genetic variants in footprinted regulatory regions are indeed silent. Combining this information with GWAS data reveals that our annotation helps in computationally fine-mapping 86 SNPs in GWAS hit regions with at least a 2-fold increase in the posterior odds of picking the causal SNP. The rich meta information provided by the tissue-specificity and the identity of the putative TF binding site being affected also helps in identifying the underlying mechanism supporting the association. As an example, the enrichment for LDL level-associated SNPs is 9.1-fold higher among SNPs predicted to affect HNF4 binding sites than in a background model already including tissue-specific annotation.