Cargando…

Membrane protein structures without crystals, by single particle electron cryomicroscopy

It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crys...

Descripción completa

Detalles Bibliográficos
Autor principal: Vinothkumar, Kutti R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764762/
https://www.ncbi.nlm.nih.gov/pubmed/26435463
http://dx.doi.org/10.1016/j.sbi.2015.07.009
Descripción
Sumario:It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques.