Cargando…
Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment
Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating effic...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764770/ https://www.ncbi.nlm.nih.gov/pubmed/26958638 http://dx.doi.org/10.1016/j.dib.2016.02.001 |
Sumario: | Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating efficiency of combination therapy through down-regulation of DNA repair pathway, the suppression effects of DNA repair pathway by chemotherapeutic agents from natural bioactive compounds are less understood (Eitsuka et al., 2014; Kastan et al., 2004; Kawabata et al., 2000; Mancuso et al., 2014) [5], [7], [9]. Here, the data shows that ferulic acid reduced the S-phases post to UV treatment in breast cancer cells and was hypersensitive in breast cancer cells, MDA-MB-231. |
---|