Cargando…

Scalable Multifunctional Ultra-thin Graphite Sponge: Free-standing, Superporous, Superhydrophobic, Oleophilic Architecture with Ferromagnetic Properties for Environmental Cleaning

Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering m...

Descripción completa

Detalles Bibliográficos
Autores principales: Bay, Hamed Hosseini, Patino, Daisy, Mutlu, Zafer, Romero, Paige, Ozkan, Mihrimah, Ozkan, Cengiz S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764831/
https://www.ncbi.nlm.nih.gov/pubmed/26908346
http://dx.doi.org/10.1038/srep21858
Descripción
Sumario:Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering material which not only serves this purpose, but can also be altered for other applications to preserve natural resources, a facile template-free process is suggested to fabricate a superporous, superhydrophobic ultra-thin graphite sponge. Moreover, the process is designed to be inexpensive and scalable. The fabricated sponge can be used to clean up different types of oil, organic solvents, toxic and corrosive contaminants. This versatile microstructure can retain its functionality even when pulverized. The sponge is applicable for targeted sorption and collection due to its ferromagnetic properties. We hope that such a cost-effective process can be embraced and implemented widely.