Cargando…

Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate

Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is s...

Descripción completa

Detalles Bibliográficos
Autores principales: Candini, A., Klar, D., Marocchi, S., Corradini, V., Biagi, R., De Renzi, V., del Pennino, U., Troiani, F., Bellini, V., Klyatskaya, S., Ruben, M., Kummer, K., Brookes, N. B., Huang, H., Soncini, A., Wende, H., Affronte, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764849/
https://www.ncbi.nlm.nih.gov/pubmed/26907811
http://dx.doi.org/10.1038/srep21740
Descripción
Sumario:Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc(2)) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world.