Cargando…

Polarization Drift Channel Model for Coherent Fibre-Optic Systems

A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts, emulating a random...

Descripción completa

Detalles Bibliográficos
Autores principales: Czegledi, Cristian B., Karlsson, Magnus, Agrell, Erik, Johannisson, Pontus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764918/
https://www.ncbi.nlm.nih.gov/pubmed/26905596
http://dx.doi.org/10.1038/srep21217
Descripción
Sumario:A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts, emulating a random walk on the Poincaré sphere, which has been successfully verified using experimental data. The model is described in the Jones, Stokes and real four-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future systems, where polarization-multiplexed transmission and sophisticated digital signal processing will be natural parts. The proposed polarization drift model is the first of its kind as prior work either models polarization drift as a deterministic process or focuses on polarization-mode dispersion in systems where the state of polarization does not affect the receiver performance. We expect the model to be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue.