Cargando…
Open Source Bayesian Models. 3. Composite Models for Prediction of Binned Responses
[Image: see text] Bayesian models constructed from structure-derived fingerprints have been a popular and useful method for drug discovery research when applied to bioactivity measurements that can be effectively classified as active or inactive. The results can be used to rank candidate structures...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764945/ https://www.ncbi.nlm.nih.gov/pubmed/26750305 http://dx.doi.org/10.1021/acs.jcim.5b00555 |
_version_ | 1782417469972938752 |
---|---|
author | Clark, Alex M. Dole, Krishna Ekins, Sean |
author_facet | Clark, Alex M. Dole, Krishna Ekins, Sean |
author_sort | Clark, Alex M. |
collection | PubMed |
description | [Image: see text] Bayesian models constructed from structure-derived fingerprints have been a popular and useful method for drug discovery research when applied to bioactivity measurements that can be effectively classified as active or inactive. The results can be used to rank candidate structures according to their probability of activity, and this ranking benefits from the high degree of interpretability when structure-based fingerprints are used, making the results chemically intuitive. Besides selecting an activity threshold, building a Bayesian model is fast and requires few or no parameters or user intervention. The method also does not suffer from such acute overtraining problems as quantitative structure–activity relationships or quantitative structure–property relationships (QSAR/QSPR). This makes it an approach highly suitable for automated workflows that are independent of user expertise or prior knowledge of the training data. We now describe a new method for creating a composite group of Bayesian models to extend the method to work with multiple states, rather than just binary. Incoming activities are divided into bins, each covering a mutually exclusive range of activities. For each of these bins, a Bayesian model is created to model whether or not the compound belongs in the bin. Analyzing putative molecules using the composite model involves making a prediction for each bin and examining the relative likelihood for each assignment, for example, highest value wins. The method has been evaluated on a collection of hundreds of data sets extracted from ChEMBL v20 and validated data sets for ADME/Tox and bioactivity. |
format | Online Article Text |
id | pubmed-4764945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-47649452016-02-29 Open Source Bayesian Models. 3. Composite Models for Prediction of Binned Responses Clark, Alex M. Dole, Krishna Ekins, Sean J Chem Inf Model [Image: see text] Bayesian models constructed from structure-derived fingerprints have been a popular and useful method for drug discovery research when applied to bioactivity measurements that can be effectively classified as active or inactive. The results can be used to rank candidate structures according to their probability of activity, and this ranking benefits from the high degree of interpretability when structure-based fingerprints are used, making the results chemically intuitive. Besides selecting an activity threshold, building a Bayesian model is fast and requires few or no parameters or user intervention. The method also does not suffer from such acute overtraining problems as quantitative structure–activity relationships or quantitative structure–property relationships (QSAR/QSPR). This makes it an approach highly suitable for automated workflows that are independent of user expertise or prior knowledge of the training data. We now describe a new method for creating a composite group of Bayesian models to extend the method to work with multiple states, rather than just binary. Incoming activities are divided into bins, each covering a mutually exclusive range of activities. For each of these bins, a Bayesian model is created to model whether or not the compound belongs in the bin. Analyzing putative molecules using the composite model involves making a prediction for each bin and examining the relative likelihood for each assignment, for example, highest value wins. The method has been evaluated on a collection of hundreds of data sets extracted from ChEMBL v20 and validated data sets for ADME/Tox and bioactivity. American Chemical Society 2016-01-11 2016-02-22 /pmc/articles/PMC4764945/ /pubmed/26750305 http://dx.doi.org/10.1021/acs.jcim.5b00555 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Clark, Alex M. Dole, Krishna Ekins, Sean Open Source Bayesian Models. 3. Composite Models for Prediction of Binned Responses |
title | Open Source Bayesian Models. 3. Composite Models for
Prediction of Binned Responses |
title_full | Open Source Bayesian Models. 3. Composite Models for
Prediction of Binned Responses |
title_fullStr | Open Source Bayesian Models. 3. Composite Models for
Prediction of Binned Responses |
title_full_unstemmed | Open Source Bayesian Models. 3. Composite Models for
Prediction of Binned Responses |
title_short | Open Source Bayesian Models. 3. Composite Models for
Prediction of Binned Responses |
title_sort | open source bayesian models. 3. composite models for
prediction of binned responses |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764945/ https://www.ncbi.nlm.nih.gov/pubmed/26750305 http://dx.doi.org/10.1021/acs.jcim.5b00555 |
work_keys_str_mv | AT clarkalexm opensourcebayesianmodels3compositemodelsforpredictionofbinnedresponses AT dolekrishna opensourcebayesianmodels3compositemodelsforpredictionofbinnedresponses AT ekinssean opensourcebayesianmodels3compositemodelsforpredictionofbinnedresponses |