Cargando…

Molecular orbital analysis of the hydrogen bonded water dimer

As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydro...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Bo, Jiang, Wanrun, Dai, Xin, Gao, Yang, Wang, Zhigang, Zhang, Rui-Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764947/
https://www.ncbi.nlm.nih.gov/pubmed/26905305
http://dx.doi.org/10.1038/srep22099
_version_ 1782417470445846528
author Wang, Bo
Jiang, Wanrun
Dai, Xin
Gao, Yang
Wang, Zhigang
Zhang, Rui-Qin
author_facet Wang, Bo
Jiang, Wanrun
Dai, Xin
Gao, Yang
Wang, Zhigang
Zhang, Rui-Qin
author_sort Wang, Bo
collection PubMed
description As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems.
format Online
Article
Text
id pubmed-4764947
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47649472016-03-02 Molecular orbital analysis of the hydrogen bonded water dimer Wang, Bo Jiang, Wanrun Dai, Xin Gao, Yang Wang, Zhigang Zhang, Rui-Qin Sci Rep Article As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems. Nature Publishing Group 2016-02-24 /pmc/articles/PMC4764947/ /pubmed/26905305 http://dx.doi.org/10.1038/srep22099 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Bo
Jiang, Wanrun
Dai, Xin
Gao, Yang
Wang, Zhigang
Zhang, Rui-Qin
Molecular orbital analysis of the hydrogen bonded water dimer
title Molecular orbital analysis of the hydrogen bonded water dimer
title_full Molecular orbital analysis of the hydrogen bonded water dimer
title_fullStr Molecular orbital analysis of the hydrogen bonded water dimer
title_full_unstemmed Molecular orbital analysis of the hydrogen bonded water dimer
title_short Molecular orbital analysis of the hydrogen bonded water dimer
title_sort molecular orbital analysis of the hydrogen bonded water dimer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764947/
https://www.ncbi.nlm.nih.gov/pubmed/26905305
http://dx.doi.org/10.1038/srep22099
work_keys_str_mv AT wangbo molecularorbitalanalysisofthehydrogenbondedwaterdimer
AT jiangwanrun molecularorbitalanalysisofthehydrogenbondedwaterdimer
AT daixin molecularorbitalanalysisofthehydrogenbondedwaterdimer
AT gaoyang molecularorbitalanalysisofthehydrogenbondedwaterdimer
AT wangzhigang molecularorbitalanalysisofthehydrogenbondedwaterdimer
AT zhangruiqin molecularorbitalanalysisofthehydrogenbondedwaterdimer