Cargando…
Detecting false positive sequence homology: a machine learning approach
BACKGROUND: Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are...
Autores principales: | Fujimoto, M. Stanley, Suvorov, Anton, Jensen, Nicholas O., Clement, Mark J., Bybee, Seth M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765110/ https://www.ncbi.nlm.nih.gov/pubmed/26911862 http://dx.doi.org/10.1186/s12859-016-0955-3 |
Ejemplares similares
-
Homology Induction: the use of machine learning to improve sequence similarity searches
por: Karwath, Andreas, et al.
Publicado: (2002) -
Deep Ancestral Introgression Shapes Evolutionary History of Dragonflies and
Damselflies
por: Suvorov, Anton, et al.
Publicado: (2021) -
GeneWaltz--A new method for reducing the false positives of gene finding
por: Misawa, Kazuharu, et al.
Publicado: (2010) -
Buffer substitution in malaria rapid diagnostic tests causes false-positive results
por: Gillet, Philippe, et al.
Publicado: (2010) -
Semantic segmentation of plant roots from RGB (mini-) rhizotron images—generalisation potential and false positives of established methods and advanced deep-learning models
por: Baykalov, Pavel, et al.
Publicado: (2023)