Cargando…
Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins
BACKGROUND: Predicting protein subcellular localization is indispensable for inferring protein functions. Recent studies have been focusing on predicting not only single-location proteins, but also multi-location proteins. Almost all of the high performing predictors proposed recently use gene ontol...
Autores principales: | Wan, Shibiao, Mak, Man-Wai, Kung, Sun-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765148/ https://www.ncbi.nlm.nih.gov/pubmed/26911432 http://dx.doi.org/10.1186/s12859-016-0940-x |
Ejemplares similares
-
mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines
por: Wan, Shibiao, et al.
Publicado: (2012) -
HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins
por: Wan, Shibiao, et al.
Publicado: (2014) -
Benchmark data for identifying multi-functional types of membrane proteins
por: Wan, Shibiao, et al.
Publicado: (2016) -
Fast subcellular localization by cascaded fusion of signal-based and homology-based methods
por: Mak, Man-Wai, et al.
Publicado: (2011) -
Identify RNA-associated subcellular localizations based on multi-label learning using Chou’s 5-steps rule
por: Wang, Hao, et al.
Publicado: (2021)