Cargando…

Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis

Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly charac...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamayo, Elisabeth, Benabdellah, Karim, Ferrol, Nuria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765768/
https://www.ncbi.nlm.nih.gov/pubmed/26900849
http://dx.doi.org/10.1371/journal.pone.0149606
_version_ 1782417569648476160
author Tamayo, Elisabeth
Benabdellah, Karim
Ferrol, Nuria
author_facet Tamayo, Elisabeth
Benabdellah, Karim
Ferrol, Nuria
author_sort Tamayo, Elisabeth
collection PubMed
description Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1), were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6) contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1. By using a yeast expression system, we observed that the newly identified homologs partially reverted sensitivity of the GRX deletion yeast strains to external oxidants. Furthermore, our results indicated that RiGRX4 and RiGRX5 play a role in iron homeostasis in yeast. Gene expression analyses revealed that RiGRX1 and RiGRX6 were more highly expressed in the intraradical (IRM) than in the extraradical mycelium (ERM). Exposure of the ERM to hydrogen peroxide induced up-regulation of RiGRX1, RiGRX4 and RiGRX5 gene expression. RiGRX4 expression was also up-regulated in the ERM when the fungus was grown in media supplemented with a high iron concentration. These data indicate the two monothiol class II GRXs, RiGRX4 and RiGRX5, might be involved in oxidative stress protection and in the regulation of fungal iron homeostasis. Increased expression of RiGRX1 and RiGRX6 in the IRM suggests that these GRXs should play a key role in oxidative stress protection of R. irregularis during its in planta phase.
format Online
Article
Text
id pubmed-4765768
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47657682016-03-07 Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis Tamayo, Elisabeth Benabdellah, Karim Ferrol, Nuria PLoS One Research Article Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1), were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6) contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1. By using a yeast expression system, we observed that the newly identified homologs partially reverted sensitivity of the GRX deletion yeast strains to external oxidants. Furthermore, our results indicated that RiGRX4 and RiGRX5 play a role in iron homeostasis in yeast. Gene expression analyses revealed that RiGRX1 and RiGRX6 were more highly expressed in the intraradical (IRM) than in the extraradical mycelium (ERM). Exposure of the ERM to hydrogen peroxide induced up-regulation of RiGRX1, RiGRX4 and RiGRX5 gene expression. RiGRX4 expression was also up-regulated in the ERM when the fungus was grown in media supplemented with a high iron concentration. These data indicate the two monothiol class II GRXs, RiGRX4 and RiGRX5, might be involved in oxidative stress protection and in the regulation of fungal iron homeostasis. Increased expression of RiGRX1 and RiGRX6 in the IRM suggests that these GRXs should play a key role in oxidative stress protection of R. irregularis during its in planta phase. Public Library of Science 2016-02-22 /pmc/articles/PMC4765768/ /pubmed/26900849 http://dx.doi.org/10.1371/journal.pone.0149606 Text en © 2016 Tamayo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Tamayo, Elisabeth
Benabdellah, Karim
Ferrol, Nuria
Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis
title Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis
title_full Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis
title_fullStr Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis
title_full_unstemmed Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis
title_short Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis
title_sort characterization of three new glutaredoxin genes in the arbuscular mycorrhizal fungus rhizophagus irregularis: putative role of rigrx4 and rigrx5 in iron homeostasis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765768/
https://www.ncbi.nlm.nih.gov/pubmed/26900849
http://dx.doi.org/10.1371/journal.pone.0149606
work_keys_str_mv AT tamayoelisabeth characterizationofthreenewglutaredoxingenesinthearbuscularmycorrhizalfungusrhizophagusirregularisputativeroleofrigrx4andrigrx5inironhomeostasis
AT benabdellahkarim characterizationofthreenewglutaredoxingenesinthearbuscularmycorrhizalfungusrhizophagusirregularisputativeroleofrigrx4andrigrx5inironhomeostasis
AT ferrolnuria characterizationofthreenewglutaredoxingenesinthearbuscularmycorrhizalfungusrhizophagusirregularisputativeroleofrigrx4andrigrx5inironhomeostasis