Cargando…

Early vigour improves phosphate uptake in wheat

Quantitative trait loci (QTLs) for shoot biomass were identified in wheat grown on a soil high in total phosphorus (P) but low in plant-available P. The two populations screened included recombinant inbred lines (RILs) from Chuan-Mai 18/Vigour 18 and doubled-haploid lines from Kukri/Janz. Glasshouse...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryan, Peter R., Liao, Mingtan, Delhaize, Emmanuel, Rebetzke, Gregory J., Weligama, Chandrakumara, Spielmeyer, Wolfgang, James, Richard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765783/
https://www.ncbi.nlm.nih.gov/pubmed/26320241
http://dx.doi.org/10.1093/jxb/erv403
Descripción
Sumario:Quantitative trait loci (QTLs) for shoot biomass were identified in wheat grown on a soil high in total phosphorus (P) but low in plant-available P. The two populations screened included recombinant inbred lines (RILs) from Chuan-Mai 18/Vigour 18 and doubled-haploid lines from Kukri/Janz. Glasshouse-grown plants were harvested at the five-leaf stage. Seven QTLs for shoot biomass were identified in the RILs, with the largest on chromosome 7A accounting for 7.4% of the phenotypic variance. RILs from the upper tail had larger embryos than RILs from the lower tail. Tail lines were then grown in non-limiting P and the results indicated that early vigour and the capacity to access P contributed to the initial distribution. The influence of early vigour on P nutrition was examined further with advanced vigour lines (AVLs). The AVLs accumulated more shoot biomass, maintained lower shoot P concentrations, and showed greater P-acquisition efficiency than Vigour 18. Nine QTLs for shoot biomass were identified in the Kukri/Janz population. Two on chromosomes 4B and 4D accounted for 24.8% of the variance. Candidates underlying these QTLs are the Rht genes. We confirmed the influence of these genes using near-isogenic lines with different Rht alleles. The dwarf and semi-dwarf alleles affected shoot and root biomass at high and low P but not the efficiency of P acquisition. We conclude that early vigour contributed to the distributions in both populations. Early vigour can increase plant growth at suboptimal P and some sources can also improve the efficiency of P acquisition.