Cargando…
Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
Motivation: Despite ongoing cancer research, available therapies are still limited in quantity and effectiveness, and making treatment decisions for individual patients remains a hard problem. Established subtypes, which help guide these decisions, are mainly based on individual data types. However,...
Autores principales: | Speicher, Nora K., Pfeifer, Nico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765854/ https://www.ncbi.nlm.nih.gov/pubmed/26072491 http://dx.doi.org/10.1093/bioinformatics/btv244 |
Ejemplares similares
-
Using kernelized partial canonical correlation analysis to study directly coupled side chains and allostery in small G proteins
por: Soltan Ghoraie, Laleh, et al.
Publicado: (2015) -
Phenome-driven disease genetics prediction toward drug discovery
por: Chen, Yang, et al.
Publicado: (2015) -
A hierarchical Bayesian model for flexible module discovery in three-way time-series data
por: Amar, David, et al.
Publicado: (2015) -
Integrative random forest for gene regulatory network inference
por: Petralia, Francesca, et al.
Publicado: (2015) -
MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms
por: Zickmann, Franziska, et al.
Publicado: (2015)