Cargando…
Using kernelized partial canonical correlation analysis to study directly coupled side chains and allostery in small G proteins
Motivation: Inferring structural dependencies among a protein’s side chains helps us understand their coupled motions. It is known that coupled fluctuations can reveal pathways of communication used for information propagation in a molecule. Side-chain conformations are commonly represented by multi...
Autores principales: | Soltan Ghoraie, Laleh, Burkowski, Forbes, Zhu, Mu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765857/ https://www.ncbi.nlm.nih.gov/pubmed/26072474 http://dx.doi.org/10.1093/bioinformatics/btv241 |
Ejemplares similares
-
Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
por: Speicher, Nora K., et al.
Publicado: (2015) -
Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
por: Ocone, Andrea, et al.
Publicado: (2015) -
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
por: Park, Danny S., et al.
Publicado: (2015) -
Large-scale model quality assessment for improving protein tertiary structure prediction
por: Cao, Renzhi, et al.
Publicado: (2015) -
PAGER: constructing PAGs and new PAG–PAG relationships for network biology
por: Yue, Zongliang, et al.
Publicado: (2015)