Cargando…
Improving compound–protein interaction prediction by building up highly credible negative samples
Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated...
Autores principales: | Liu, Hui, Sun, Jianjiang, Guan, Jihong, Zheng, Jie, Zhou, Shuigeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765858/ https://www.ncbi.nlm.nih.gov/pubmed/26072486 http://dx.doi.org/10.1093/bioinformatics/btv256 |
Ejemplares similares
-
Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns
por: Childs, Dorothee, et al.
Publicado: (2015) -
Reconstruction of clonal trees and tumor composition from multi-sample sequencing data
por: El-Kebir, Mohammed, et al.
Publicado: (2015) -
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
por: Park, Danny S., et al.
Publicado: (2015) -
Large-scale model quality assessment for improving protein tertiary structure prediction
por: Cao, Renzhi, et al.
Publicado: (2015) -
PAGER: constructing PAGs and new PAG–PAG relationships for network biology
por: Yue, Zongliang, et al.
Publicado: (2015)