Cargando…
MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
Motivation: Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has de...
Autores principales: | Liu, Ke, Peng, Shengwen, Wu, Junqiu, Zhai, Chengxiang, Mamitsuka, Hiroshi, Zhu, Shanfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765864/ https://www.ncbi.nlm.nih.gov/pubmed/26072501 http://dx.doi.org/10.1093/bioinformatics/btv237 |
Ejemplares similares
-
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
por: Peng, Shengwen, et al.
Publicado: (2016) -
Exploiting ontology graph for predicting sparsely annotated gene function
por: Wang, Sheng, et al.
Publicado: (2015) -
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
por: Park, Danny S., et al.
Publicado: (2015) -
Large-scale model quality assessment for improving protein tertiary structure prediction
por: Cao, Renzhi, et al.
Publicado: (2015) -
PAGER: constructing PAGs and new PAG–PAG relationships for network biology
por: Yue, Zongliang, et al.
Publicado: (2015)