Cargando…
Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
Motivation: High-dimensional single-cell snapshot data are becoming widespread in the systems biology community, as a mean to understand biological processes at the cellular level. However, as temporal information is lost with such data, mathematical models have been limited to capture only static f...
Autores principales: | Ocone, Andrea, Haghverdi, Laleh, Mueller, Nikola S., Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765871/ https://www.ncbi.nlm.nih.gov/pubmed/26072513 http://dx.doi.org/10.1093/bioinformatics/btv257 |
Ejemplares similares
-
Using kernelized partial canonical correlation analysis to study directly coupled side chains and allostery in small G proteins
por: Soltan Ghoraie, Laleh, et al.
Publicado: (2015) -
Integrative random forest for gene regulatory network inference
por: Petralia, Francesca, et al.
Publicado: (2015) -
Reconstructing 16S rRNA genes in metagenomic data
por: Yuan, Cheng, et al.
Publicado: (2015) -
Inferring orthologous gene regulatory networks using interspecies data fusion
por: Penfold, Christopher A., et al.
Publicado: (2015) -
Reconstruction of clonal trees and tumor composition from multi-sample sequencing data
por: El-Kebir, Mohammed, et al.
Publicado: (2015)