Cargando…
Protein (multi-)location prediction: utilizing interdependencies via a generative model
Motivation: Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein’s function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can...
Autores principales: | Simha, Ramanuja, Briesemeister, Sebastian, Kohlbacher, Oliver, Shatkay, Hagit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765880/ https://www.ncbi.nlm.nih.gov/pubmed/26072505 http://dx.doi.org/10.1093/bioinformatics/btv264 |
Ejemplares similares
-
Knowledge-driven geospatial location resolution for phylogeographic models of virus migration
por: Weissenbacher, Davy, et al.
Publicado: (2015) -
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
por: Park, Danny S., et al.
Publicado: (2015) -
Large-scale model quality assessment for improving protein tertiary structure prediction
por: Cao, Renzhi, et al.
Publicado: (2015) -
PAGER: constructing PAGs and new PAG–PAG relationships for network biology
por: Yue, Zongliang, et al.
Publicado: (2015) -
Genome-wide detection of intervals of genetic heterogeneity associated with complex traits
por: Llinares-López, Felipe, et al.
Publicado: (2015)