Cargando…
Modeling Relapsing Disease Dynamics in a Host-Vector Community
Vector-borne diseases represent a threat to human and wildlife populations and mathematical models provide a means to understand and control epidemics involved in complex host-vector systems. The disease model studied here is a host-vector system with a relapsing class of host individuals, used to i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765964/ https://www.ncbi.nlm.nih.gov/pubmed/26910884 http://dx.doi.org/10.1371/journal.pntd.0004428 |
_version_ | 1782417596105097216 |
---|---|
author | Johnson, Tammi L. Landguth, Erin L. Stone, Emily F. |
author_facet | Johnson, Tammi L. Landguth, Erin L. Stone, Emily F. |
author_sort | Johnson, Tammi L. |
collection | PubMed |
description | Vector-borne diseases represent a threat to human and wildlife populations and mathematical models provide a means to understand and control epidemics involved in complex host-vector systems. The disease model studied here is a host-vector system with a relapsing class of host individuals, used to investigate tick-borne relapsing fever (TBRF). Equilibrium analysis is performed for models with increasing numbers of relapses and multiple hosts and the disease reproduction number, R(0), is generalized to establish relationships with parameters that would result in the elimination of the disease. We show that host relapses in a single competent host-vector system is needed to maintain an endemic state. We show that the addition of an incompetent second host with no relapses increases the number of relapses needed for maintaining the pathogen in the first competent host system. Further, coupling of the system with hosts of differing competencies will always reduce R(0), making it more difficult for the system to reach an endemic state. |
format | Online Article Text |
id | pubmed-4765964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47659642016-02-26 Modeling Relapsing Disease Dynamics in a Host-Vector Community Johnson, Tammi L. Landguth, Erin L. Stone, Emily F. PLoS Negl Trop Dis Research Article Vector-borne diseases represent a threat to human and wildlife populations and mathematical models provide a means to understand and control epidemics involved in complex host-vector systems. The disease model studied here is a host-vector system with a relapsing class of host individuals, used to investigate tick-borne relapsing fever (TBRF). Equilibrium analysis is performed for models with increasing numbers of relapses and multiple hosts and the disease reproduction number, R(0), is generalized to establish relationships with parameters that would result in the elimination of the disease. We show that host relapses in a single competent host-vector system is needed to maintain an endemic state. We show that the addition of an incompetent second host with no relapses increases the number of relapses needed for maintaining the pathogen in the first competent host system. Further, coupling of the system with hosts of differing competencies will always reduce R(0), making it more difficult for the system to reach an endemic state. Public Library of Science 2016-02-24 /pmc/articles/PMC4765964/ /pubmed/26910884 http://dx.doi.org/10.1371/journal.pntd.0004428 Text en © 2016 Johnson et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Johnson, Tammi L. Landguth, Erin L. Stone, Emily F. Modeling Relapsing Disease Dynamics in a Host-Vector Community |
title | Modeling Relapsing Disease Dynamics in a Host-Vector Community |
title_full | Modeling Relapsing Disease Dynamics in a Host-Vector Community |
title_fullStr | Modeling Relapsing Disease Dynamics in a Host-Vector Community |
title_full_unstemmed | Modeling Relapsing Disease Dynamics in a Host-Vector Community |
title_short | Modeling Relapsing Disease Dynamics in a Host-Vector Community |
title_sort | modeling relapsing disease dynamics in a host-vector community |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765964/ https://www.ncbi.nlm.nih.gov/pubmed/26910884 http://dx.doi.org/10.1371/journal.pntd.0004428 |
work_keys_str_mv | AT johnsontammil modelingrelapsingdiseasedynamicsinahostvectorcommunity AT landgutherinl modelingrelapsingdiseasedynamicsinahostvectorcommunity AT stoneemilyf modelingrelapsingdiseasedynamicsinahostvectorcommunity |