Cargando…
Contrasting Patterns in the Evolution of Vertebrate MLX Interacting Protein (MLXIP) and MLX Interacting Protein-Like (MLXIPL) Genes
ChREBP and MondoA are glucose-sensitive transcription factors that regulate aspects of energy metabolism. Here we performed a phylogenomic analysis of Mlxip (encoding MondoA) and Mlxipl (encoding ChREBP) genes across vertebrates. Analysis of extant Mlxip and Mlxipl genes suggests that the most recen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766361/ https://www.ncbi.nlm.nih.gov/pubmed/26910886 http://dx.doi.org/10.1371/journal.pone.0149682 |
Sumario: | ChREBP and MondoA are glucose-sensitive transcription factors that regulate aspects of energy metabolism. Here we performed a phylogenomic analysis of Mlxip (encoding MondoA) and Mlxipl (encoding ChREBP) genes across vertebrates. Analysis of extant Mlxip and Mlxipl genes suggests that the most recent common ancestor of these genes was composed of 17 coding exons. Single copy genes encoding both ChREBP and MondoA, along with their interacting partner Mlx, were found in diverse vertebrate genomes, including fish that have experienced a genome duplication. This observation suggests that a single Mlx gene has been retained to maintain coordinate regulation of ChREBP and MondoA. The ChREBP-β isoform, the more potent and constitutively active isoform, appeared with the evolution of tetrapods and is absent from the Mlxipl genes of fish. Evaluation of the conservation of ChREBP and MondoA sequences demonstrate that MondoA is better conserved and potentially mediates more ancient function in glucose metabolism. |
---|