Cargando…

Sparse deconvolution of high-density super-resolution images

In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluoro...

Descripción completa

Detalles Bibliográficos
Autores principales: Hugelier, Siewert, de Rooi, Johan J., Bernex, Romain, Duwé, Sam, Devos, Olivier, Sliwa, Michel, Dedecker, Peter, Eilers, Paul H. C., Ruckebusch, Cyril
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766479/
https://www.ncbi.nlm.nih.gov/pubmed/26912448
http://dx.doi.org/10.1038/srep21413
_version_ 1782417673442820096
author Hugelier, Siewert
de Rooi, Johan J.
Bernex, Romain
Duwé, Sam
Devos, Olivier
Sliwa, Michel
Dedecker, Peter
Eilers, Paul H. C.
Ruckebusch, Cyril
author_facet Hugelier, Siewert
de Rooi, Johan J.
Bernex, Romain
Duwé, Sam
Devos, Olivier
Sliwa, Michel
Dedecker, Peter
Eilers, Paul H. C.
Ruckebusch, Cyril
author_sort Hugelier, Siewert
collection PubMed
description In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluorophore density by using representations of the signal that promote sparsity of the super-resolution images via an L(1)-norm penalty. This penalty imposes a restriction on the sum of absolute values of the estimates of emitter brightness. By implementing an L(0)-norm penalty – on the number of fluorophores rather than on their overall brightness – we present a penalized regression approach that can work at high-density and allows fast super-resolution imaging. We validated our approach on simulated images with densities up to 15 emitters per μm(-2) and investigated total internal reflection fluorescence (TIRF) data of mitochondria in a HEK293-T cell labeled with DAKAP-Dronpa. We demonstrated super-resolution imaging of the dynamics with a resolution down to 55 nm and a 0.5 s time sampling.
format Online
Article
Text
id pubmed-4766479
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47664792016-03-02 Sparse deconvolution of high-density super-resolution images Hugelier, Siewert de Rooi, Johan J. Bernex, Romain Duwé, Sam Devos, Olivier Sliwa, Michel Dedecker, Peter Eilers, Paul H. C. Ruckebusch, Cyril Sci Rep Article In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluorophore density by using representations of the signal that promote sparsity of the super-resolution images via an L(1)-norm penalty. This penalty imposes a restriction on the sum of absolute values of the estimates of emitter brightness. By implementing an L(0)-norm penalty – on the number of fluorophores rather than on their overall brightness – we present a penalized regression approach that can work at high-density and allows fast super-resolution imaging. We validated our approach on simulated images with densities up to 15 emitters per μm(-2) and investigated total internal reflection fluorescence (TIRF) data of mitochondria in a HEK293-T cell labeled with DAKAP-Dronpa. We demonstrated super-resolution imaging of the dynamics with a resolution down to 55 nm and a 0.5 s time sampling. Nature Publishing Group 2016-02-25 /pmc/articles/PMC4766479/ /pubmed/26912448 http://dx.doi.org/10.1038/srep21413 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Hugelier, Siewert
de Rooi, Johan J.
Bernex, Romain
Duwé, Sam
Devos, Olivier
Sliwa, Michel
Dedecker, Peter
Eilers, Paul H. C.
Ruckebusch, Cyril
Sparse deconvolution of high-density super-resolution images
title Sparse deconvolution of high-density super-resolution images
title_full Sparse deconvolution of high-density super-resolution images
title_fullStr Sparse deconvolution of high-density super-resolution images
title_full_unstemmed Sparse deconvolution of high-density super-resolution images
title_short Sparse deconvolution of high-density super-resolution images
title_sort sparse deconvolution of high-density super-resolution images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766479/
https://www.ncbi.nlm.nih.gov/pubmed/26912448
http://dx.doi.org/10.1038/srep21413
work_keys_str_mv AT hugeliersiewert sparsedeconvolutionofhighdensitysuperresolutionimages
AT derooijohanj sparsedeconvolutionofhighdensitysuperresolutionimages
AT bernexromain sparsedeconvolutionofhighdensitysuperresolutionimages
AT duwesam sparsedeconvolutionofhighdensitysuperresolutionimages
AT devosolivier sparsedeconvolutionofhighdensitysuperresolutionimages
AT sliwamichel sparsedeconvolutionofhighdensitysuperresolutionimages
AT dedeckerpeter sparsedeconvolutionofhighdensitysuperresolutionimages
AT eilerspaulhc sparsedeconvolutionofhighdensitysuperresolutionimages
AT ruckebuschcyril sparsedeconvolutionofhighdensitysuperresolutionimages