Cargando…

A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice

BACKGROUND: The tumor immunosuppressive microenvironment represents a major obstacle to an effective tumor-specific cellular immune response. METHODS: In the present study, the counterbalance effect of a novel metronomic chemotherapy protocol on such an immunosuppressive microenvironment was evaluat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tagliamonte, Maria, Petrizzo, Annacarmen, Napolitano, Maria, Luciano, Antonio, Rea, Domenica, Barbieri, Antonio, Arra, Claudio, Maiolino, Piera, Tornesello, Marialina, Ciliberto, Gennaro, Buonaguro, Franco M., Buonaguro, Luigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766679/
https://www.ncbi.nlm.nih.gov/pubmed/26911136
http://dx.doi.org/10.1186/s12967-016-0812-1
Descripción
Sumario:BACKGROUND: The tumor immunosuppressive microenvironment represents a major obstacle to an effective tumor-specific cellular immune response. METHODS: In the present study, the counterbalance effect of a novel metronomic chemotherapy protocol on such an immunosuppressive microenvironment was evaluated in a mouse model upon sub-cutaneous ectopic implantation of B16 melanoma cells. The chemotherapy consisted of a novel multi-drug cocktail including taxanes and alkylating agents, administered in a daily metronomic fashion. The newly designed strategy was shown to be safe, well tolerated and significantly efficacious. RESULTS: Treated animals showed a remarkable delay in tumor growth and prolonged survival as compared to control group. Such an effect was directly correlated with CD4(+) T cell reduction and CD8(+) T cell increase. Furthermore, a significant reduction in the percentage of both CD25(+)FoxP3(+) and CD25(+)CD127(low) regulatory T cell population was found both in the spleens and in the tumor lesions. Finally, the metronomic chemotherapy induced an intrinsic CD8(+) T cell response specific to B16 naturally expressed Trp2 TAA. CONCLUSION: The novel multi-drug daily metronomic chemotherapy evaluated in the present study was very effective in counterbalancing the immunosuppressive tumor microenvironment. Consequently, the intrinsic anti-tumor T cell immunity could exert its function, targeting specific TAA and significantly containing tumor growth. Overall, the results show that this represents a promising adjuvant approach to significantly enhance efficacy of intrinsic or vaccine-elicited tumor-specific cellular immunity.