Cargando…

Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles

[Image: see text] The integration of membrane proteins into “lipid raft” membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences...

Descripción completa

Detalles Bibliográficos
Autores principales: Schlebach, Jonathan P., Barrett, Paul J., Day, Charles A., Kim, Ji Hun, Kenworthy, Anne K., Sanders, Charles R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766968/
https://www.ncbi.nlm.nih.gov/pubmed/26859249
http://dx.doi.org/10.1021/acs.biochem.5b01154
_version_ 1782417762719629312
author Schlebach, Jonathan P.
Barrett, Paul J.
Day, Charles A.
Kim, Ji Hun
Kenworthy, Anne K.
Sanders, Charles R.
author_facet Schlebach, Jonathan P.
Barrett, Paul J.
Day, Charles A.
Kim, Ji Hun
Kenworthy, Anne K.
Sanders, Charles R.
author_sort Schlebach, Jonathan P.
collection PubMed
description [Image: see text] The integration of membrane proteins into “lipid raft” membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.
format Online
Article
Text
id pubmed-4766968
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-47669682017-02-09 Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles Schlebach, Jonathan P. Barrett, Paul J. Day, Charles A. Kim, Ji Hun Kenworthy, Anne K. Sanders, Charles R. Biochemistry [Image: see text] The integration of membrane proteins into “lipid raft” membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains. American Chemical Society 2016-02-09 2016-02-23 /pmc/articles/PMC4766968/ /pubmed/26859249 http://dx.doi.org/10.1021/acs.biochem.5b01154 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Schlebach, Jonathan P.
Barrett, Paul J.
Day, Charles A.
Kim, Ji Hun
Kenworthy, Anne K.
Sanders, Charles R.
Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles
title Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles
title_full Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles
title_fullStr Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles
title_full_unstemmed Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles
title_short Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles
title_sort topologically diverse human membrane proteins partition to liquid-disordered domains in phase-separated lipid vesicles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766968/
https://www.ncbi.nlm.nih.gov/pubmed/26859249
http://dx.doi.org/10.1021/acs.biochem.5b01154
work_keys_str_mv AT schlebachjonathanp topologicallydiversehumanmembraneproteinspartitiontoliquiddisordereddomainsinphaseseparatedlipidvesicles
AT barrettpaulj topologicallydiversehumanmembraneproteinspartitiontoliquiddisordereddomainsinphaseseparatedlipidvesicles
AT daycharlesa topologicallydiversehumanmembraneproteinspartitiontoliquiddisordereddomainsinphaseseparatedlipidvesicles
AT kimjihun topologicallydiversehumanmembraneproteinspartitiontoliquiddisordereddomainsinphaseseparatedlipidvesicles
AT kenworthyannek topologicallydiversehumanmembraneproteinspartitiontoliquiddisordereddomainsinphaseseparatedlipidvesicles
AT sanderscharlesr topologicallydiversehumanmembraneproteinspartitiontoliquiddisordereddomainsinphaseseparatedlipidvesicles