Cargando…

Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua

A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force...

Descripción completa

Detalles Bibliográficos
Autores principales: Tajkarimi, Mehrdad, Harrison, Scott H., Hung, Albert M., Graves, Joseph L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4767320/
https://www.ncbi.nlm.nih.gov/pubmed/26914334
http://dx.doi.org/10.1371/journal.pone.0149769
_version_ 1782417802530914304
author Tajkarimi, Mehrdad
Harrison, Scott H.
Hung, Albert M.
Graves, Joseph L.
author_facet Tajkarimi, Mehrdad
Harrison, Scott H.
Hung, Albert M.
Graves, Joseph L.
author_sort Tajkarimi, Mehrdad
collection PubMed
description A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.
format Online
Article
Text
id pubmed-4767320
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47673202016-03-09 Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua Tajkarimi, Mehrdad Harrison, Scott H. Hung, Albert M. Graves, Joseph L. PLoS One Research Article A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism. Public Library of Science 2016-02-25 /pmc/articles/PMC4767320/ /pubmed/26914334 http://dx.doi.org/10.1371/journal.pone.0149769 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Tajkarimi, Mehrdad
Harrison, Scott H.
Hung, Albert M.
Graves, Joseph L.
Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua
title Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua
title_full Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua
title_fullStr Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua
title_full_unstemmed Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua
title_short Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua
title_sort mechanobiology of antimicrobial resistant escherichia coli and listeria innocua
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4767320/
https://www.ncbi.nlm.nih.gov/pubmed/26914334
http://dx.doi.org/10.1371/journal.pone.0149769
work_keys_str_mv AT tajkarimimehrdad mechanobiologyofantimicrobialresistantescherichiacoliandlisteriainnocua
AT harrisonscotth mechanobiologyofantimicrobialresistantescherichiacoliandlisteriainnocua
AT hungalbertm mechanobiologyofantimicrobialresistantescherichiacoliandlisteriainnocua
AT gravesjosephl mechanobiologyofantimicrobialresistantescherichiacoliandlisteriainnocua