Cargando…

Macroscopic evidence for Abrikosov-type magnetic vortexes in MnSi A-phase

Intrinsic phase coherence between individual topologically stable knots in spin arrangement – skyrmions – is known to induce the crystalline-like structure in the A-phase of non-centrosymmetric MnSi with chiral spin-orbit interaction. Here we report the experimental evidence for two types of the sky...

Descripción completa

Detalles Bibliográficos
Autores principales: Lobanova, I. I., Glushkov, V. V., Sluchanko, N. E., Demishev, S. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768173/
https://www.ncbi.nlm.nih.gov/pubmed/26915818
http://dx.doi.org/10.1038/srep22101
Descripción
Sumario:Intrinsic phase coherence between individual topologically stable knots in spin arrangement – skyrmions – is known to induce the crystalline-like structure in the A-phase of non-centrosymmetric MnSi with chiral spin-orbit interaction. Here we report the experimental evidence for two types of the skyrmion lattice (SL) inside the A-phase of MnSi, which are distinguished by different coupling to the anisotropic magnetic interactions. The transition between these SLs is shown to induce a change in magnetic scattering between isotropic MR discovered in the area inside the A-phase (the A-phase core) and anisotropic MR found on the border of the A-phase. We argue that the SL in the A-phase core corresponds to the dense skyrmion state built from individual skyrmions in a way similar to Abrikosov-type magnetic vortexes.