Cargando…
Macroscopic evidence for Abrikosov-type magnetic vortexes in MnSi A-phase
Intrinsic phase coherence between individual topologically stable knots in spin arrangement – skyrmions – is known to induce the crystalline-like structure in the A-phase of non-centrosymmetric MnSi with chiral spin-orbit interaction. Here we report the experimental evidence for two types of the sky...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768173/ https://www.ncbi.nlm.nih.gov/pubmed/26915818 http://dx.doi.org/10.1038/srep22101 |
Sumario: | Intrinsic phase coherence between individual topologically stable knots in spin arrangement – skyrmions – is known to induce the crystalline-like structure in the A-phase of non-centrosymmetric MnSi with chiral spin-orbit interaction. Here we report the experimental evidence for two types of the skyrmion lattice (SL) inside the A-phase of MnSi, which are distinguished by different coupling to the anisotropic magnetic interactions. The transition between these SLs is shown to induce a change in magnetic scattering between isotropic MR discovered in the area inside the A-phase (the A-phase core) and anisotropic MR found on the border of the A-phase. We argue that the SL in the A-phase core corresponds to the dense skyrmion state built from individual skyrmions in a way similar to Abrikosov-type magnetic vortexes. |
---|