Cargando…
Vibrational Properties of Nanocrystals from the Debye Scattering Equation
One hundred years after the original formulation by Petrus J.W. Debije (aka Peter Debye), the Debye Scattering Equation (DSE) is still the most accurate expression to model the diffraction pattern from nanoparticle systems. A major limitation in the original form of the DSE is that it refers to a st...
Autores principales: | Scardi, P., Gelisio, L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768180/ https://www.ncbi.nlm.nih.gov/pubmed/26916341 http://dx.doi.org/10.1038/srep22221 |
Ejemplares similares
-
Debye–Waller coefficient of heavily deformed nanocrystalline iron
por: Scardi, P., et al.
Publicado: (2017) -
Site-occupancy factors in the Debye scattering equation. A theoretical discussion on significance and correctness
por: Ferri, Fabio, et al.
Publicado: (2023) -
Thermodynamic and Transport Properties of Equilibrium Debye Plasmas
por: Colonna, Gianpiero, et al.
Publicado: (2020) -
Structure, Morphology, and Faceting of TiO(2) Photocatalysts by the Debye Scattering Equation Method. The P25 and P90 Cases of Study
por: Bertolotti, Federica, et al.
Publicado: (2020) -
Whole pair distribution function modeling: the bridging of Bragg and Debye scattering theories
por: Leonardi, Alberto
Publicado: (2021)