Cargando…
Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization
Quantitative optical measurements of deep subwavelength, three-dimensional (3D), nanometric structures with sensitivity to sub-nanometer details address a ubiquitous measurement challenge. A Fourier domain normalization approach is used in the Fourier optical imaging code to simulate the full 3D sca...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768307/ https://www.ncbi.nlm.nih.gov/pubmed/26925297 http://dx.doi.org/10.1038/lsa.2016.38 |
Sumario: | Quantitative optical measurements of deep subwavelength, three-dimensional (3D), nanometric structures with sensitivity to sub-nanometer details address a ubiquitous measurement challenge. A Fourier domain normalization approach is used in the Fourier optical imaging code to simulate the full 3D scattered light field of nominally 15 nm-sized structures, accurately replicating the light field as a function of the focus position. Using the full 3D light field, nanometer scale details such as a 2 nm thin conformal oxide and nanometer topography are rigorously fitted for features less than one-thirtieth of the wavelength in size. The densely packed structures are positioned nearly an order of magnitude closer than the conventional Rayleigh resolution limit and can be measured with sub-nanometer parametric uncertainties. This approach enables a practical measurement sensitivity to size variations of only a few atoms in size using a high-throughput optical configuration with broad application in measuring nanometric structures and nanoelectronic devices. |
---|