Cargando…
Catalyst-Free Synthesis of Borylated Lactones from Esters via Electrophilic Oxyboration
[Image: see text] A catalyst-free oxyboration reaction of alkynes is developed. The resulting borylated isocoumarins and 2-pyrones are isolated as boronic acids, pinacolboronate esters, or potassium organotrifluoroborate salts, providing a variety of bench-stable organoboron building blocks for down...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768685/ https://www.ncbi.nlm.nih.gov/pubmed/26849770 http://dx.doi.org/10.1021/jacs.5b12989 |
Sumario: | [Image: see text] A catalyst-free oxyboration reaction of alkynes is developed. The resulting borylated isocoumarins and 2-pyrones are isolated as boronic acids, pinacolboronate esters, or potassium organotrifluoroborate salts, providing a variety of bench-stable organoboron building blocks for downstream functionalization. This method has functional group compatibility, is scalable, and proceeds with readily available materials: B-chlorocatecholborane and methyl esters. Mechanistic studies indicate that the B-chlorocatecholborane acts as a carbophilic Lewis acid toward the alkyne, providing a mechanistically distinct pathway for oxyboration that avoids B–O σ bond formation and enables this catalyst-free route. |
---|