Cargando…
Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos
We previously established trophoblast stem cells from mouse androgenetic embryos (AGTS cells). In this study, to further characterize AGTS cells, we compared cell proliferation activity between trophoblast stem (TS) cells and AGTS cells under fibroblast growth factor 4 (FGF4) signaling. TS cells con...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society for Reproduction and Development
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768778/ https://www.ncbi.nlm.nih.gov/pubmed/26498204 http://dx.doi.org/10.1262/jrd.2015-097 |
Sumario: | We previously established trophoblast stem cells from mouse androgenetic embryos (AGTS cells). In this study, to further characterize AGTS cells, we compared cell proliferation activity between trophoblast stem (TS) cells and AGTS cells under fibroblast growth factor 4 (FGF4) signaling. TS cells continued to proliferate and maintained mitotic cell division in the presence of FGF4. After FGF4 deprivation, the cell proliferation stopped, the rate of M-phase cells decreased, and trophoblast giant cells formed. In contrast, some of AGTS cells continued to proliferate, and the rate of M-phase cells did not decrease after FGF4 deprivation, although the other cells differentiated into giant cells. RO3306, an ATP competitor that selectively inhibits CDK1, inhibited the cell proliferation of both TS and AGTS cells. Under RO3306 treatment, cell death was induced in AGTS cells but not in TS cells. These results indicate that RO3306 caused TS cells to shift mitotic cell division to endoreduplication but that some of AGTS cells did not shift to endoreduplication and induced cell death. In conclusion, the paternal genome facilitated the proliferation of trophoblast cells without FGF4 signaling. |
---|