Cargando…

Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats

The aim of the present study was to investigate the age-related alterations in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats (SHR) and the underlying mechanisms. Aging resulted in a significant increase in the number of activated astrocytes and apoptotic cells in the...

Descripción completa

Detalles Bibliográficos
Autores principales: LI, YALI, LIU, JIAN, GAO, DENGFENG, WEI, JIN, YUAN, HAIFENG, NIU, XIAOLIN, ZHANG, QIAOJUN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768967/
https://www.ncbi.nlm.nih.gov/pubmed/26846626
http://dx.doi.org/10.3892/mmr.2016.4853
Descripción
Sumario:The aim of the present study was to investigate the age-related alterations in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats (SHR) and the underlying mechanisms. Aging resulted in a significant increase in the number of activated astrocytes and apoptotic cells in the SHR group, which was accompanied by increased expression of oxidative stress markers (iNOS and gp47(phox)) and apoptotic regulatory proteins (Bax and caspase-3). In addition, the expression of PPAR-γ and Bcl-2 were progressively reduced with increasing age in the SHR group. The 32 and 64-week-old SHRs exhibited significantly increased numbers of apoptotic cells, oxidative stress markers and pro-apoptotic proteins compared with age-matched WKY rats, which was accompanied by reduced expression of PPAR-γ. Compared with the 16 and 32-week-old WKY group, the 64-week-old WKY rats exhibited increased oxidative stress and pro-apoptotic markers, and increased levels apoptotic cells. In conclusion, the present study indicated that both aging and hypertension enhanced brain damage and oxidative stress injury in the hippocampi of SHRs, indicated by an increased presence of apoptotic cells and astrocytes. In addition, reduced expression of PPAR-γ may contribute to the age-related brain damage in SHRs.