Cargando…
Population Genetic Structure of the Endangered Kaiser’s Mountain Newt, Neurergus kaiseri (Amphibia: Salamandridae)
Species often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769016/ https://www.ncbi.nlm.nih.gov/pubmed/26918642 http://dx.doi.org/10.1371/journal.pone.0149596 |
Sumario: | Species often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in an endemic and critically endangered stream breeding mountain newt, Neurergus kaiseri, within its entire range in southwestern Iran. We identified two geographic regions based on phylogenetic relationships using Bayesian inference and maximum likelihood of 779 bp mtDNA (D-loop) in 111 individuals from ten of twelve known breeding populations. This analysis revealed a clear divergence between northern populations, located in more humid habitats at higher elevation, and southern populations, from drier habitats at lower elevations regions. From seven haplotypes found in these populations none was shared between the two regions. Analysis of molecular variance (AMOVA) of N. kaiseri indicates that 94.03% of sequence variation is distributed among newt populations and 5.97% within them. Moreover, a high degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θ(CT) = 0.94, P = 0.002). The positive and significant correlation between geographic and genetic distances (r = 0.61, P = 0.002) following controlling for environmental distance suggests an important influence of geographic divergence of the sites in shaping the genetic variation and may provide tools for a possible conservation based prioritization policy for the endangered species. |
---|