Cargando…

Refining Time-Activity Classification of Human Subjects Using the Global Positioning System

BACKGROUND: Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GP...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Maogui, Li, Wei, Li, Lianfa, Houston, Douglas, Wu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769278/
https://www.ncbi.nlm.nih.gov/pubmed/26919723
http://dx.doi.org/10.1371/journal.pone.0148875
Descripción
Sumario:BACKGROUND: Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GPS data, most of them were developed for specific regions. An adaptive model for time-location classification can be widely applied to air pollution studies that use GPS to track individual level time-activity patterns. METHODS: Time-activity data were collected for seven days using GPS loggers and accelerometers from thirteen adult participants from Southern California under free living conditions. We developed an automated model based on random forests to classify major time-activity patterns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis was conducted to examine the contribution of the accelerometer data and the supplemental spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification. Our model was evaluated using both leave-one-fold-out and leave-one-subject-out methods. RESULTS: Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary highways with limited access were found to be the three most important variables in the classification model. Leave-one-fold-out cross-validation showed an overall accuracy of 99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little loss in overall accuracy. However, leave-one-subject-out cross-validation showed considerable loss in sensitivity for outdoor static and outdoor walking conditions. CONCLUSIONS: The random forests classification model can achieve high accuracy for the four major time-activity categories. The model also performed well with just GPS, road and tax parcel data. However, caution is warranted when generalizing the model developed from a small number of subjects to other populations.