Cargando…

External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis

BACKGROUND: Pneumonia remains difficult to diagnose in primary care. Prediction models based on signs and symptoms (S&S) serve to minimize the diagnostic uncertainty. External validation of these models is essential before implementation into routine practice. In this study all published S&S...

Descripción completa

Detalles Bibliográficos
Autores principales: Schierenberg, Alwin, Minnaard, Margaretha C., Hopstaken, Rogier M., van de Pol, Alma C., Broekhuizen, Berna D. L., de Wit, Niek J., Reitsma, Johannes B., van Vugt, Saskia F., Graffelman, Aleida W., Melbye, Hasse, Rainer, Timothy H., Steurer, Johann, Holm, Anette, Gonzales, Ralph, Dinant, Geert-Jan, de Groot, Joris A. H., Verheij, Theo J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769284/
https://www.ncbi.nlm.nih.gov/pubmed/26918859
http://dx.doi.org/10.1371/journal.pone.0149895
_version_ 1782418078587420672
author Schierenberg, Alwin
Minnaard, Margaretha C.
Hopstaken, Rogier M.
van de Pol, Alma C.
Broekhuizen, Berna D. L.
de Wit, Niek J.
Reitsma, Johannes B.
van Vugt, Saskia F.
Graffelman, Aleida W.
Melbye, Hasse
Rainer, Timothy H.
Steurer, Johann
Holm, Anette
Gonzales, Ralph
Dinant, Geert-Jan
de Groot, Joris A. H.
Verheij, Theo J. M.
author_facet Schierenberg, Alwin
Minnaard, Margaretha C.
Hopstaken, Rogier M.
van de Pol, Alma C.
Broekhuizen, Berna D. L.
de Wit, Niek J.
Reitsma, Johannes B.
van Vugt, Saskia F.
Graffelman, Aleida W.
Melbye, Hasse
Rainer, Timothy H.
Steurer, Johann
Holm, Anette
Gonzales, Ralph
Dinant, Geert-Jan
de Groot, Joris A. H.
Verheij, Theo J. M.
author_sort Schierenberg, Alwin
collection PubMed
description BACKGROUND: Pneumonia remains difficult to diagnose in primary care. Prediction models based on signs and symptoms (S&S) serve to minimize the diagnostic uncertainty. External validation of these models is essential before implementation into routine practice. In this study all published S&S models for prediction of pneumonia in primary care were externally validated in the individual patient data (IPD) of previously performed diagnostic studies. METHODS AND FINDINGS: S&S models for diagnosing pneumonia in adults presenting to primary care with lower respiratory tract infection and IPD for validation were identified through a systematical search. Six prediction models and IPD of eight diagnostic studies (N total = 5308, prevalence pneumonia 12%) were included. Models were assessed on discrimination and calibration. Discrimination was measured using the pooled Area Under the Curve (AUC) and delta AUC, representing the performance of an individual model relative to the average dataset performance. Prediction models by van Vugt et al. and Heckerling et al. demonstrated the highest pooled AUC of 0.79 (95% CI 0.74–0.85) and 0.72 (0.68–0.76), respectively. Other models by Diehr et al., Singal et al., Melbye et al., and Hopstaken et al. demonstrated pooled AUCs of 0.65 (0.61–0.68), 0.64 (0.61–0.67), 0.56 (0.49–0.63) and 0.53 (0.5–0.56), respectively. A similar ranking was present based on the delta AUCs of the models. Calibration demonstrated close agreement of observed and predicted probabilities in the models by van Vugt et al. and Singal et al., other models lacked such correspondence. The absence of predictors in the IPD on dataset level hampered a systematical comparison of model performance and could be a limitation to the study. CONCLUSIONS: The model by van Vugt et al. demonstrated the highest discriminative accuracy coupled with reasonable to good calibration across the IPD of different study populations. This model is therefore the main candidate for primary care use.
format Online
Article
Text
id pubmed-4769284
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47692842016-03-09 External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis Schierenberg, Alwin Minnaard, Margaretha C. Hopstaken, Rogier M. van de Pol, Alma C. Broekhuizen, Berna D. L. de Wit, Niek J. Reitsma, Johannes B. van Vugt, Saskia F. Graffelman, Aleida W. Melbye, Hasse Rainer, Timothy H. Steurer, Johann Holm, Anette Gonzales, Ralph Dinant, Geert-Jan de Groot, Joris A. H. Verheij, Theo J. M. PLoS One Research Article BACKGROUND: Pneumonia remains difficult to diagnose in primary care. Prediction models based on signs and symptoms (S&S) serve to minimize the diagnostic uncertainty. External validation of these models is essential before implementation into routine practice. In this study all published S&S models for prediction of pneumonia in primary care were externally validated in the individual patient data (IPD) of previously performed diagnostic studies. METHODS AND FINDINGS: S&S models for diagnosing pneumonia in adults presenting to primary care with lower respiratory tract infection and IPD for validation were identified through a systematical search. Six prediction models and IPD of eight diagnostic studies (N total = 5308, prevalence pneumonia 12%) were included. Models were assessed on discrimination and calibration. Discrimination was measured using the pooled Area Under the Curve (AUC) and delta AUC, representing the performance of an individual model relative to the average dataset performance. Prediction models by van Vugt et al. and Heckerling et al. demonstrated the highest pooled AUC of 0.79 (95% CI 0.74–0.85) and 0.72 (0.68–0.76), respectively. Other models by Diehr et al., Singal et al., Melbye et al., and Hopstaken et al. demonstrated pooled AUCs of 0.65 (0.61–0.68), 0.64 (0.61–0.67), 0.56 (0.49–0.63) and 0.53 (0.5–0.56), respectively. A similar ranking was present based on the delta AUCs of the models. Calibration demonstrated close agreement of observed and predicted probabilities in the models by van Vugt et al. and Singal et al., other models lacked such correspondence. The absence of predictors in the IPD on dataset level hampered a systematical comparison of model performance and could be a limitation to the study. CONCLUSIONS: The model by van Vugt et al. demonstrated the highest discriminative accuracy coupled with reasonable to good calibration across the IPD of different study populations. This model is therefore the main candidate for primary care use. Public Library of Science 2016-02-26 /pmc/articles/PMC4769284/ /pubmed/26918859 http://dx.doi.org/10.1371/journal.pone.0149895 Text en © 2016 Schierenberg et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Schierenberg, Alwin
Minnaard, Margaretha C.
Hopstaken, Rogier M.
van de Pol, Alma C.
Broekhuizen, Berna D. L.
de Wit, Niek J.
Reitsma, Johannes B.
van Vugt, Saskia F.
Graffelman, Aleida W.
Melbye, Hasse
Rainer, Timothy H.
Steurer, Johann
Holm, Anette
Gonzales, Ralph
Dinant, Geert-Jan
de Groot, Joris A. H.
Verheij, Theo J. M.
External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis
title External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis
title_full External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis
title_fullStr External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis
title_full_unstemmed External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis
title_short External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection: An Individual Patient Data Meta-Analysis
title_sort external validation of prediction models for pneumonia in primary care patients with lower respiratory tract infection: an individual patient data meta-analysis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769284/
https://www.ncbi.nlm.nih.gov/pubmed/26918859
http://dx.doi.org/10.1371/journal.pone.0149895
work_keys_str_mv AT schierenbergalwin externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT minnaardmargarethac externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT hopstakenrogierm externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT vandepolalmac externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT broekhuizenbernadl externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT dewitniekj externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT reitsmajohannesb externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT vanvugtsaskiaf externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT graffelmanaleidaw externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT melbyehasse externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT rainertimothyh externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT steurerjohann externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT holmanette externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT gonzalesralph externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT dinantgeertjan externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT degrootjorisah externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis
AT verheijtheojm externalvalidationofpredictionmodelsforpneumoniainprimarycarepatientswithlowerrespiratorytractinfectionanindividualpatientdatametaanalysis