Cargando…
Comparison of predictive modeling approaches for 30-day all-cause non-elective readmission risk
BACKGROUND: This paper explores the importance of electronic medical records (EMR) for predicting 30-day all-cause non-elective readmission risk of patients and presents a comparison of prediction performance of commonly used methods. METHODS: The data are extracted from eight Advocate Health Care h...
Autores principales: | Tong, Liping, Erdmann, Cole, Daldalian, Marina, Li, Jing, Esposito, Tina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769572/ https://www.ncbi.nlm.nih.gov/pubmed/26920363 http://dx.doi.org/10.1186/s12874-016-0128-0 |
Ejemplares similares
-
The association between outpatient follow-up visits and all-cause non-elective 30-day readmissions: A retrospective observational cohort study
por: Tong, Liping, et al.
Publicado: (2018) -
Race, Rehabilitation, and 30-Day Readmission After Elective Total Knee Arthroplasty
por: Jorgenson, Erik S., et al.
Publicado: (2015) -
Neural networks versus Logistic regression for 30 days all-cause readmission prediction
por: Allam, Ahmed, et al.
Publicado: (2019) -
Epidemiology and Predictors of all-cause 30-Day readmission in patients with sickle cell crisis
por: Kumar, Vivek, et al.
Publicado: (2020) -
Predicting all-cause risk of 30-day hospital readmission using artificial neural networks
por: Jamei, Mehdi, et al.
Publicado: (2017)