Cargando…
Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights
A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved th...
Autores principales: | Nicola, Wilten, Tripp, Bryan, Scott, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770054/ https://www.ncbi.nlm.nih.gov/pubmed/26973503 http://dx.doi.org/10.3389/fncom.2016.00015 |
Ejemplares similares
-
Mean field analysis gives accurate predictions of the behaviour of large networks of sparsely coupled and heterogeneous neurons
por: Nicola, Wilten, et al.
Publicado: (2014) -
Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons
por: Nicola, Wilten, et al.
Publicado: (2013) -
Supervised learning in spiking neural networks with FORCE training
por: Nicola, Wilten, et al.
Publicado: (2017) -
Beyond clustering: mean-field dynamics on networks with arbitrary subgraph composition
por: Ritchie, Martin, et al.
Publicado: (2015) -
Synaptic transmission of spike trains with arbitrary interspike intervals
por: Bird, Alex D, et al.
Publicado: (2015)