Cargando…
Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: (131)I-antiAFPMcAb-GCV-BSA-NPs
An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres ((131)I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of (131)I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770115/ https://www.ncbi.nlm.nih.gov/pubmed/26981334 http://dx.doi.org/10.1155/2016/9142198 |
Sumario: | An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres ((131)I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of (131)I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of (131)I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of (131)I alone. As well, the uptake rate and retention ratios of (131)I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to (131)I alone, (131)I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the (131)I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma. |
---|