Cargando…
Efficient microbial production of stylopine using a Pichia pastoris expression system
Stylopine is a protoberberine-type alkaloid that has potential biological activities. Based on the successful microbial production of (S)-reticuline, we attempted to produce stylopine from (S)-reticuline by the reaction of berberine bridge enzyme, cheilanthifoline synthase (CYP719A5), and stylopine...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770593/ https://www.ncbi.nlm.nih.gov/pubmed/26923560 http://dx.doi.org/10.1038/srep22201 |
Sumario: | Stylopine is a protoberberine-type alkaloid that has potential biological activities. Based on the successful microbial production of (S)-reticuline, we attempted to produce stylopine from (S)-reticuline by the reaction of berberine bridge enzyme, cheilanthifoline synthase (CYP719A5), and stylopine synthase (CYP719A2). Biosynthetic enzyme expression was examined in a methanol-utilizing yeast (Pichia pastoris), and both a “consolidated” system with all genes expressed in one cell and a “co-culture” system with three cell lines that each express a single gene were examined. Although both systems efficiently converted reticuline to stylopine, the consolidated system was more rapid and efficient than the co-culture system. However, substrate-feeding experiments revealed a decrease in the conversion efficiency in the consolidated system during successive cultures, whereas the conversion efficiency in the co-culture system remained constant. Thus, the final amount of stylopine produced from reticuline after successive feedings in the co-culture system was more than 150 nmoles from 750 nmoles of (R, S)-reticuline (375 nmoles of (S)-reticuline). The advantages and drawbacks of the “consolidated” system and the “co-culture” system are discussed. |
---|