Cargando…
Predicting Market Impact Costs Using Nonparametric Machine Learning Models
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gau...
Autores principales: | Park, Saerom, Lee, Jaewook, Son, Youngdoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771170/ https://www.ncbi.nlm.nih.gov/pubmed/26926235 http://dx.doi.org/10.1371/journal.pone.0150243 |
Ejemplares similares
-
Predictability of machine learning techniques to forecast the trends of market index prices: Hypothesis testing for the Korean stock markets
por: Pyo, Sujin, et al.
Publicado: (2017) -
Information-Based Boundary Equilibrium Generative Adversarial Networks with Interpretable Representation Learning
por: Hah, Junghoon, et al.
Publicado: (2018) -
Principles of nonparametric learning
por: Györfi, Laszlo
Publicado: (2002) -
Nonparametric and semiparametric models
por: Härdle, Wolfgang, et al.
Publicado: (2004) -
Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods
por: Ijaz, Muhammad Fazal, et al.
Publicado: (2020)