Cargando…
Convergence in [Formula: see text] -quasicontinuous posets
In this paper, we present one way to generalize [Formula: see text] -convergence and [Formula: see text] -convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of [Formula: see text] -continuity and [Formula: see text] -q...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771692/ https://www.ncbi.nlm.nih.gov/pubmed/27026912 http://dx.doi.org/10.1186/s40064-016-1873-6 |
Sumario: | In this paper, we present one way to generalize [Formula: see text] -convergence and [Formula: see text] -convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of [Formula: see text] -continuity and [Formula: see text] -quasicontinuity of posets are given. The main results are: (1) a poset P is [Formula: see text] -continuous if and only if the [Formula: see text] -convergence in P is topological; (2) P is [Formula: see text] -quasicontinuous if and only if the [Formula: see text] -convergence in P is topological. |
---|