Cargando…
Convergence in [Formula: see text] -quasicontinuous posets
In this paper, we present one way to generalize [Formula: see text] -convergence and [Formula: see text] -convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of [Formula: see text] -continuity and [Formula: see text] -q...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771692/ https://www.ncbi.nlm.nih.gov/pubmed/27026912 http://dx.doi.org/10.1186/s40064-016-1873-6 |
_version_ | 1782418425019105280 |
---|---|
author | Ruan, Xiao-jun Xu, Xiao-quan |
author_facet | Ruan, Xiao-jun Xu, Xiao-quan |
author_sort | Ruan, Xiao-jun |
collection | PubMed |
description | In this paper, we present one way to generalize [Formula: see text] -convergence and [Formula: see text] -convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of [Formula: see text] -continuity and [Formula: see text] -quasicontinuity of posets are given. The main results are: (1) a poset P is [Formula: see text] -continuous if and only if the [Formula: see text] -convergence in P is topological; (2) P is [Formula: see text] -quasicontinuous if and only if the [Formula: see text] -convergence in P is topological. |
format | Online Article Text |
id | pubmed-4771692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-47716922016-03-29 Convergence in [Formula: see text] -quasicontinuous posets Ruan, Xiao-jun Xu, Xiao-quan Springerplus Research In this paper, we present one way to generalize [Formula: see text] -convergence and [Formula: see text] -convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of [Formula: see text] -continuity and [Formula: see text] -quasicontinuity of posets are given. The main results are: (1) a poset P is [Formula: see text] -continuous if and only if the [Formula: see text] -convergence in P is topological; (2) P is [Formula: see text] -quasicontinuous if and only if the [Formula: see text] -convergence in P is topological. Springer International Publishing 2016-02-29 /pmc/articles/PMC4771692/ /pubmed/27026912 http://dx.doi.org/10.1186/s40064-016-1873-6 Text en © Ruan and Xu. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Ruan, Xiao-jun Xu, Xiao-quan Convergence in [Formula: see text] -quasicontinuous posets |
title | Convergence in [Formula: see text] -quasicontinuous posets |
title_full | Convergence in [Formula: see text] -quasicontinuous posets |
title_fullStr | Convergence in [Formula: see text] -quasicontinuous posets |
title_full_unstemmed | Convergence in [Formula: see text] -quasicontinuous posets |
title_short | Convergence in [Formula: see text] -quasicontinuous posets |
title_sort | convergence in [formula: see text] -quasicontinuous posets |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771692/ https://www.ncbi.nlm.nih.gov/pubmed/27026912 http://dx.doi.org/10.1186/s40064-016-1873-6 |
work_keys_str_mv | AT ruanxiaojun convergenceinformulaseetextquasicontinuousposets AT xuxiaoquan convergenceinformulaseetextquasicontinuousposets |