Cargando…
Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework
The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population response...
Autores principales: | Song, H. Francis, Yang, Guangyu R., Wang, Xiao-Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771709/ https://www.ncbi.nlm.nih.gov/pubmed/26928718 http://dx.doi.org/10.1371/journal.pcbi.1004792 |
Ejemplares similares
-
Reward-based training of recurrent neural networks for cognitive and value-based tasks
por: Song, H Francis, et al.
Publicado: (2017) -
Training dynamically balanced excitatory-inhibitory networks
por: Ingrosso, Alessandro, et al.
Publicado: (2019) -
PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks
por: Ehrlich, Daniel B., et al.
Publicado: (2021) -
Learning excitatory-inhibitory neuronal assemblies in recurrent networks
por: Mackwood, Owen, et al.
Publicado: (2021) -
Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies
por: Soo, Wayne W.M., et al.
Publicado: (2023)