Cargando…
Group B Streptococcus Induces a Robust IFN-γ Response by CD4(+) T Cells in an In Vitro and In Vivo Model
Group B Streptococcus (GBS) serotype III causes life-threatening infections. Cytokines have emerged as important players for the control of disease, particularly IFN-γ. Although potential sources of this cytokine have been proposed, no specific cell line has ever been described as a leading contribu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771917/ https://www.ncbi.nlm.nih.gov/pubmed/26989699 http://dx.doi.org/10.1155/2016/5290604 |
Sumario: | Group B Streptococcus (GBS) serotype III causes life-threatening infections. Cytokines have emerged as important players for the control of disease, particularly IFN-γ. Although potential sources of this cytokine have been proposed, no specific cell line has ever been described as a leading contributor. In this study, CD4(+) T cell activation profiles in response to GBS were evaluated through in vivo, ex vivo, and in vitro approaches. Total splenocytes readily produce a type 1 proinflammatory response by releasing IFN-γ, TNF-α, and IL-6 and actively recruit T cells via chemokines like CXCL9, CXCL10, and CCL3. Responding CD4(+) T cells differentiate into Th1 cells producing large amounts of IFN-γ, TNF-α, and IL-2. In vitro studies using dendritic cell and CD4(+) T cell cocultures infected with wild-type GBS or a nonencapsulated mutant suggested that GBS capsular polysaccharide, one of the major bacterial virulence factors, differentially modulates surface expression of CD69 and IFN-γ production. Overall, CD4(+) T cells are important producers of IFN-γ and might thus influence the course of GBS infection through the expression balance of this cytokine. |
---|