Cargando…

A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians

BACKGROUND: Despite increased use of dietary pattern methods in nutritional epidemiology, there have been few direct comparisons of methods. Older adults are a particularly understudied population in the dietary pattern literature. This study aimed to compare dietary patterns derived by principal co...

Descripción completa

Detalles Bibliográficos
Autores principales: Thorpe, Maree G., Milte, Catherine M., Crawford, David, McNaughton, Sarah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772350/
https://www.ncbi.nlm.nih.gov/pubmed/26928406
http://dx.doi.org/10.1186/s12966-016-0353-2
Descripción
Sumario:BACKGROUND: Despite increased use of dietary pattern methods in nutritional epidemiology, there have been few direct comparisons of methods. Older adults are a particularly understudied population in the dietary pattern literature. This study aimed to compare dietary patterns derived by principal component analysis (PCA) and cluster analysis (CA) in older adults and to examine their associations with socio-demographic and health behaviours. METHODS: Men (n = 1888) and women (n = 2071) aged 55–65 years completed a 111-item food frequency questionnaire in 2010. Food items were collapsed into 52 food groups and dietary patterns were determined by PCA and CA. Associations between dietary patterns and participant characteristics were examined using Chi-square analysis. The standardised PCA-derived dietary patterns were compared across the clusters using one-way ANOVA. RESULTS: PCA identified four dietary patterns in men and two dietary patterns in women. CA identified three dietary patterns in both men and women. Men in cluster 1 (fruit, vegetables, wholegrains, fish and poultry) scored higher on PCA factor 1 (vegetable dishes, fruit, fish and poultry) and factor 4 (vegetables) compared to factor 2 (spreads, biscuits, cakes and confectionery) and factor 3 (red meat, processed meat, white-bread and hot chips) (mean, 95 % CI; 0.92, 0.82–1.02 vs. 0.74, 0.63–0.84 vs. −0.43, −0.50– −0.35 vs. 0.60 0.46–0.74, respectively). Women in cluster 1 (fruit, vegetables and fish) scored highest on PCA factor 1 (fruit, vegetables and fish) compared to factor 2 (processed meat, hot chips cakes and confectionery) (1.05, 0.97–1.14 vs. −0.14, −0.21– −0.07, respectively). Cluster 3 (small eaters) in both men and women had negative factor scores for all the identified PCA dietary patterns. Those with dietary patterns characterised by higher consumption of red and processed meat and refined grains were more likely to be Australian-born, have a lower level of education, a higher BMI, smoke and did not meet physical activity recommendations (all P < 0.05). CONCLUSIONS: PCA and CA identified comparable dietary patterns within older Australians. However, PCA may provide some advantages compared to CA with respect to interpretability of the resulting dietary patterns. Older adults with poor dietary patterns also displayed other negative lifestyle behaviours. Food-based dietary pattern methods may inform dietary advice that is understood by the community. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12966-016-0353-2) contains supplementary material, which is available to authorized users.