Cargando…

Evidence for lattice-polarization-enhanced field effects at the SrTiO(3)-based heterointerface

Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensional electron liquid between two insulating oxides. For the LaAlO(3)/SrTiO(3) (LAO/STO) interface, such gating effect could be further enhanced by a strong lattice polarization of STO caused by simultaneous...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Y., Zhang, H. R., Lei, Y., Chen, Y. Z., Pryds, N., Shen, Baogen, Sun, Jirong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772472/
https://www.ncbi.nlm.nih.gov/pubmed/26926433
http://dx.doi.org/10.1038/srep22418
Descripción
Sumario:Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensional electron liquid between two insulating oxides. For the LaAlO(3)/SrTiO(3) (LAO/STO) interface, such gating effect could be further enhanced by a strong lattice polarization of STO caused by simultaneous application of gate field and illumination light. Herein, by monitoring the discharging process upon removing the gate field, we give firm evidence for the occurrence of this lattice polarization at the amorphous-LaAlO(3)/SrTiO(3) interface. Moreover, we find that the lattice polarization is accompanied with a large expansion of the out-of-plane lattice of STO. Photo excitation affects the polarization process by accelerating the field-induced lattice expansion. The present work demonstrates the great potential of combined stimuli in exploring emergent phenomenon at complex oxide interfaces.