Cargando…
GPURFSCREEN: a GPU based virtual screening tool using random forest classifier
BACKGROUND: In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale c...
Autores principales: | Jayaraj, P. B., Ajay, Mathias K., Nufail, M., Gopakumar, G., Jaleel, U. C. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772510/ https://www.ncbi.nlm.nih.gov/pubmed/26933453 http://dx.doi.org/10.1186/s13321-016-0124-8 |
Ejemplares similares
-
eccCL: parallelized GPU implementation of Ensemble Classifier Chains
por: Riemenschneider, Mona, et al.
Publicado: (2017) -
NMF-mGPU: non-negative matrix factorization on multi-GPU systems
por: Mejía-Roa, Edgardo, et al.
Publicado: (2015) -
MSIFinder: a python package for detecting MSI status using random forest classifier
por: Zhou, Tao, et al.
Publicado: (2021) -
CBMOS: a GPU-enabled Python framework for the numerical study of center-based models
por: Mathias, Sonja, et al.
Publicado: (2022) -
VSFlow: an open-source ligand-based virtual screening tool
por: Jung, Sascha, et al.
Publicado: (2023)