Cargando…

L-Theanine Improves Immunity by Altering TH2/TH1 Cytokine Balance, Brain Neurotransmitters, and Expression of Phospholipase C in Rat Hearts

BACKGROUND: This study aimed to investigate the regulatory effects of L-theanine on secretion of immune cytokines, hormones, and neurotransmitters, and mRNA expression of phospholipase C (PLC) in rats, and to explore its regulatory mechanism in immune function. MATERIAL/METHODS: Sixty-four Sprague-D...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chengjian, Tong, Haiou, Yan, Qiongxian, Tang, Shaoxun, Han, Xuefeng, Xiao, Wenjun, Tan, Zhiliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772912/
https://www.ncbi.nlm.nih.gov/pubmed/26922362
http://dx.doi.org/10.12659/MSM.897077
Descripción
Sumario:BACKGROUND: This study aimed to investigate the regulatory effects of L-theanine on secretion of immune cytokines, hormones, and neurotransmitters, and mRNA expression of phospholipase C (PLC) in rats, and to explore its regulatory mechanism in immune function. MATERIAL/METHODS: Sixty-four Sprague-Dawley rats received daily intragastric infusion of different doses of L-theanine solution [0, 50 (LT), 200 (MT), and 400 (HT) mg/kg BW]. Cytokines, immunoglobulins, and hormones in the serum, neurotransmitters, and mRNA expression of PLC in the relevant tissues were assayed. RESULTS: L-theanine administration increased the splenic organ index and decreased the contents of ILs-4/6/10 and the ratio of IL-4/IFN-γ in the serum. High-dose L-theanine administration increased the levels of dopamine and 5-hydroxytryptamine in the pituitary and hippocampus, resulting in decrease in corticosterone level in the serum. L-theanine administration decreased the mRNA expressions of PLC isomers in the liver and PLC-γ1 and PLC-δ1 in the spleen. Interestingly, mRNA expressions of PLC-βf1 in the spleen and PLC isomers mRNA in the heart were up-regulated by L-theanine administration. CONCLUSIONS: Administration of 400 mg/kg BWL-theanine improved immune function of the rats by increasing the splenic weight, altering the Th2/Th1 cytokine balance, decreasing the corticosterone level in the serum, elevating dopamine and 5-hydroxytryptamine in the brain, and regulating the mRNA expression of PLC isomers in the heart.