Cargando…
Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration
Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for var...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772918/ https://www.ncbi.nlm.nih.gov/pubmed/26955272 http://dx.doi.org/10.2147/IJN.S97223 |
_version_ | 1782418640324263936 |
---|---|
author | Yu, Ting Xu, Bei He, Lili Xia, Shan Chen, Yan Zeng, Jun Liu, Yongmei Li, Shuangzhi Tan, Xiaoyue Ren, Ke Yao, Shaohua Song, Xiangrong |
author_facet | Yu, Ting Xu, Bei He, Lili Xia, Shan Chen, Yan Zeng, Jun Liu, Yongmei Li, Shuangzhi Tan, Xiaoyue Ren, Ke Yao, Shaohua Song, Xiangrong |
author_sort | Yu, Ting |
collection | PubMed |
description | Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors. |
format | Online Article Text |
id | pubmed-4772918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47729182016-03-07 Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration Yu, Ting Xu, Bei He, Lili Xia, Shan Chen, Yan Zeng, Jun Liu, Yongmei Li, Shuangzhi Tan, Xiaoyue Ren, Ke Yao, Shaohua Song, Xiangrong Int J Nanomedicine Original Research Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors. Dove Medical Press 2016-02-25 /pmc/articles/PMC4772918/ /pubmed/26955272 http://dx.doi.org/10.2147/IJN.S97223 Text en © 2016 Yu et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Yu, Ting Xu, Bei He, Lili Xia, Shan Chen, Yan Zeng, Jun Liu, Yongmei Li, Shuangzhi Tan, Xiaoyue Ren, Ke Yao, Shaohua Song, Xiangrong Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration |
title | Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration |
title_full | Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration |
title_fullStr | Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration |
title_full_unstemmed | Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration |
title_short | Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration |
title_sort | pigment epithelial-derived factor gene loaded novel cooh-peg-plga-cooh nanoparticles promoted tumor suppression by systemic administration |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772918/ https://www.ncbi.nlm.nih.gov/pubmed/26955272 http://dx.doi.org/10.2147/IJN.S97223 |
work_keys_str_mv | AT yuting pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT xubei pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT helili pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT xiashan pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT chenyan pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT zengjun pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT liuyongmei pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT lishuangzhi pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT tanxiaoyue pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT renke pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT yaoshaohua pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration AT songxiangrong pigmentepithelialderivedfactorgeneloadednovelcoohpegplgacoohnanoparticlespromotedtumorsuppressionbysystemicadministration |