Cargando…

Type 2 Endoleaks: The Diagnostic Performance of Non-Specialized Readers on Arterial and Venous Phase Multi-Slice CT Angiography

PURPOSE: To define the diagnostic precision of non-specialized readers in the detection of type 2 endoleaks (T2EL) in arterial versus venous phase acquisitions, and to evaluate an approach for radiation dose reduction. METHODS: The pre-discharge and final follow-up multi-slice CT angiographies of 16...

Descripción completa

Detalles Bibliográficos
Autores principales: Nolz, Richard, Ulrika, Asenbaum, Furtner, Julia, Woitek, Ramona, Unterhumer, Sylvia, Wibmer, Andreas, Prusa, Alexander, Loewe, Christian, Schoder, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773111/
https://www.ncbi.nlm.nih.gov/pubmed/26930490
http://dx.doi.org/10.1371/journal.pone.0149725
Descripción
Sumario:PURPOSE: To define the diagnostic precision of non-specialized readers in the detection of type 2 endoleaks (T2EL) in arterial versus venous phase acquisitions, and to evaluate an approach for radiation dose reduction. METHODS: The pre-discharge and final follow-up multi-slice CT angiographies of 167 patients were retrospectively analyzed. Image data were separated into an arterial and a venous phase reading set. Two radiology residents assessed the reading sets for the presence of a T2EL, feeding vessels, and aneurysm sac size. Findings were compared with a standard of reference established by two experts in interventional radiology. The effective dose was calculated. RESULTS: Overall, experts detected 131 T2ELs, and 331 feeding vessels in 334 examinations. Persistent T2ELs causing aneurysm sac growth > 5 mm were detected in 20 patients. Radiation in arterial and venous phases contributed to a mean of 58.6% and 39.0% of the total effective dose. Findings of reader 1 and 2 showed comparable sensitivities in arterial sets of 80.9 versus 85.5 (p = 0.09), and in venous sets of 73.3 versus 79.4 (p = 0.15), respectively. Reader 1 and 2 achieved a significant higher detection rate of feeding vessels with arterial compared to venous set (p = 0.04, p < 0.01). Both readers correctly identified T2ELs with growing aneurysm sac in all cases, independent of the acquisition phase. CONCLUSION: Arterial acquisitions enable non-specialized readers an accurate detection of T2ELs, and a significant better identification of feeding vessels. Based on our results, it seems reasonable to eliminate venous phase acquisitions.