Cargando…
The Accuracy of Computerized Adaptive Testing in Heterogeneous Populations: A Mixture Item-Response Theory Analysis
BACKGROUND: Computerized adaptive testing (CAT) utilizes latent variable measurement model parameters that are typically assumed to be equivalently applicable to all people. Biased latent variable scores may be obtained in samples that are heterogeneous with respect to a specified measurement model....
Autores principales: | Sawatzky, Richard, Ratner, Pamela A., Kopec, Jacek A., Wu, Amery D., Zumbo, Bruno D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773251/ https://www.ncbi.nlm.nih.gov/pubmed/26930348 http://dx.doi.org/10.1371/journal.pone.0150563 |
Ejemplares similares
-
The use of latent variable mixture models to identify invariant items in test construction
por: Sawatzky, Richard, et al.
Publicado: (2017) -
Self-reported physical and mental health status and quality of life in adolescents: a latent variable mediation model
por: Sawatzky, Richard, et al.
Publicado: (2010) -
Adapting cognitive diagnosis computerized adaptive testing item selection rules to traditional item response theory
por: Sorrel, Miguel A., et al.
Publicado: (2020) -
Compromised Item Detection for Computerized Adaptive Testing
por: Liu, Cheng, et al.
Publicado: (2019) -
Bayesian modeling of item heterogeneity in dichotomous recognition memory data and prospects for computerized adaptive testing
por: Güsten, Jeremie, et al.
Publicado: (2022)